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J. Phys. A: Math. Gen. 13 (1980) 3023-3028. Printed in Great Britain 

Gravitational radiation in Szekeres’s quasi-spherical 
space-times? 

G M Covarrubias3 
Department of Mathematics, Queen Elizabeth College, University of London, London 
W8 7AH, UK 

Received 25 March 1980 

Abstract. A necessary and sufficient condition for flatness of the quasi-spherical space- 
times of Szekeres is given. Using this, the linear approximation of these space-times is 
considered and it is shown that the third derivatives of the quadrupole moments vanish for 
matter distribution contained within a comoving surface. Hence the Einstein formula gives 
zero energy loss due to gravitational radiation. This agrees with other investigations, which 
have shown that no radiation is present in these space-times. 

1. Introduction 

Although it is now widely accepted that gravitational waves do occur in the context of 
general relativity, one of the outstanding questions is whether freely falling matter 
radiates or not (Bonnor 1976, Ehlers et a1 1976). Einstein’s equations for pressureless 
matter or ‘dust’ are a good model for freely falling matter, but the known exact solutions 
of these equations have not yet given a definitive answer. The work of Cocke (1966), 
who reported the cylindrically symmetric solutions as radiative, has been questioned on 
physical grounds (Bonnor 1976). The other known dust solutions have, with one 
exception, high spatial symmetry, so radiation would not be expected. The exception is 
the Szekeres (1975a, b) class of exact solutions which do not have any Killing vectors 
(Bonnor et al 1977). 

Recently (Bonnor 1976) it has been shown that a spherical portion of finite spatial 
volume of a solution of the ‘quasi-spherical’ class of Szekeres solutions can be smoothly 
matched to an exterior Schwarzschild metric. This metric is static and hence these 
spaces are non-radiative. A similar conclusion has been reached with different 
arguments by Berger et al (1 977). 

Although several approximation methods show that gravitational waves are 
produced for certain motions of matter, these do not apply to free fall (Bonnor 1963). 
Approximation methods designed for free fall have not yet been shown to be 
satisfactory. In particular, it is not known whether Einstein’s linear approximation 
formula 

7 (1.1) dE/dt = & D * P D * P  
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where D"' are the quadrupole moments and E is the energy of radiation, is valid for 
free fall. In this paper we evaluate the formula (1.1) for the freely-falling matter in a 
quasi-spherical Szekeres space-time and show that it is consistent with the conclusion 
mentioned above-that there is no radiation. 

In § 2 the quasi-spherical space-times of Szekeres are introduced. Section 3 
contains the conditions under which the gravitational field is 'weak'. In § 4 we look for 
Minkowski coordinates for the flat space background of the linear approximation used 
and in § 5 we evaluate dE/dt given by (1.1). The paper ends with a brief conclusion. 

2. Szekeres quasi-spherical space-times 

Szekeres found two classes of solutions of Einstein's equations for dust with zero 
cosmological constant (later generalised to include perfect fluid sources by Szafron and 
Wainwright (1977); see also Szafron 1977). The equations are 

(2.1) R i k  -:gikR = -871-p~ i k  U , 

where R ik is the Ricci tensor, gik the metric tensor, R = R 'i is the Riemann scalar, p is 
the density of the pressureless matter, and U' is the unit four-velocity. Comoving 
coordinates are chosen, so U' = 86. The metric is of the form 

ds2 = -exp(2a) dr2 - exp(2P)(dy2+ dz2)+ dt2. (2.2) 
For the class of solutions in which we are interested (ap /ar  # 0), a and p are given by 

with 

P = a(r ) (  y 2 +  z 2 )  + 2f(r)y + 2g(r)z + c ( r ) ,  (2.4) 

(2.5) 

and the quasi-spherical subclass is further determined by the condition 
2 2 1  ac-f - g  =z, 

a, c, f and g being arbitrary functions of r. 
The dynamical properties of the system are governed by the equation for rfI 

4; = w 2 -  1 + S ( r ) / r f I ;  (2 .6)  
throughout this paper suffices 1 , 2 , 3 , 4  will denote differentiation with respect to r, y, z 
and t respectively. (2.6) is a Friedman equation, and is the same as that obtained in 
spherically symmetric collapse of dust (Tolman 1934). Apart from the restriction 

w >o,  (2.7) 
the six functions a, f, g, c, w ,  S are arbitrary functions of their argument. A seventh 
function arises UPOR integration of (2.6). Of these only five are independent because 
there is a relation (2.5) between them and, moreover, one function of r can be given an 
assigned form by a coordinate transformation r '=  F ( r ) .  

The density is given by 
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3. Conditions for a weak field 

We shall state the flatness condition of a Szekeres quasi-spherical space-time, and then 
find weak field solutions as small departures from flatness. 

Theorem. S = 0 is a necessary and sufJicient condition for a Szekeres quasi-spherical 
space-time to be flat. If S = 0 

By a detailed calculation of the Riemann tensor Rijkl we have found 

4 = e (w’ -  1)”’t+ h ( r ) ,  (3 .1 )  

where e = * l ,  and h is an arbitrary function of integration. 

w as 
From (3 .1 ) ,  which follows directly from (2 .6) ,  we see that we have further to restrict 

w a l .  (3 .2)  

We shall suppose that the weakness of the field is governed solely by the magnitude 
of S,  and write 

S ( r )  = rS(r) ,  (3 .3)  

where E is a small parameter. S ( r )  and the remaining arbitrary functions will not be 
assumed small. 

The metric will be expressed as 

g i k  = q i k  -k Y i k ,  ( 3 .4 )  
where T i k  is the metric for flat space-time in Szekeres coordinates, that is (2.2) with 4 
given by (3 .1 ) ,  and Y,k is a small deviation from flatness of order E .  

With (3.3), (2 .6 )  gives + to order E as 

+(G t )  = +’+ E&, t ) ,  +’= e ( w 2 -  1 ) ’ ” t +  h, (3 .5 )  
where is determined by the differential equation 

2 e ( ~ ~ - 1 ) ’ / ~ & =  S / [ e ( w ’ -  1 ) 1 / 2 t + h ] .  (3 .6 )  
The metric becomes, to first order 

ds2 = -exp(2ao) dr2-exp(2Po)(dy2+dz2)+dt2- E [ @  dr2+fl(dy2+dz2)], (3 .7 )  

where exp(ao) and exp(Po) are as in (2.3) with + = +’ and 

whereas the density becomes 

We have been using units in which G = 1 and c = 1 (see (2.1)). If we use units in which 
G # 1 and c = 1 we should write 87rGp in (2.1) which, by (3.9), justifies us in identifying 
the parameter E with the gravitational constant G. 

To evaluate the quadrupole moments of the linear approximation we shall need 
Cartesian coordinates for the flat space background. The equations of transformation 
will be considered in the next section. 
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4. Equations of transformation to Minkowski coordinates 

Consider a flat space-time. Let X k  : X '  = X ,  X 2  = Y, X 3  = Z, X4 = T denote a set of 
Minkowski coordinates, and ra  : r1  = r, r2  = y, r3  = z ,  r4 = t a set of Szekeres coordinates 
as in (2.2). In the following, a primed symbol for a quantity means that it is to be 
calculated in X k ;  unprimed quantities are to be calculated in ra .  

If we put 

axk/ara  = pka,  (4.1) 
the equations of transformation for the Christoffel symbols, 

become 

because { }' = 0. Hence the problem reduces to the determination of the 20 functions 
X k ,  Pka satisfying the linear system of differential equations (4.1) and (4.3), and also the 
10 finite equations 

T a b -  T { k P i a P k b  z= 0, (4.4) 
which are the equations of transformation of the metric tensor T a b .  The integrability 
conditions of (4.1) are satisfied identically because of (4.3), and the conditions of 
integrability of (4.3) are 

R a b c d  - R ; j k l P ' a P ' b P k c P i d  = 0 ,  (4.5) 

where R a b c d  is the Riemann tensor, which are also satisfied. 
All the Christoffel symbols {4c4} vanish, so from (4.3) we have 

aPk4/at = 0.  (4.6) 

X k ( r ,  y, z ,  t ) = X k ( r ,  y, z ) t + R k ( r ,  y, z ) .  

Hence from (4.1) we see that the transformation must be linear in t :  

(4.7) 
(4.7) is all the information we shall need to prove the main result of the paper in the next 
section. 

We shall need the transformation from the coordinates r, y, z ,  T to Minkowski 
coordinates. Putting k = 4 in (4.7) we obtain 

t =  w, Y, Z I T +  %, Y ,  z ) ,  (4 8) 

This, with (4.7), gives the transformation 

x m ( r ,  y, 2, ~ ) = Z a ( r ,  y, z )T+$*(r ,  y, z ) ,  a = 1,2 ,3 ,  T -A T, (4.10) 

(4.11) 
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5. The quadrupole moments 

The quadrupole moments of a comoving region V at constant time T are 

D"' = 5 p(X, Y, Z, T)[3X"XP - SapXpXF] d X  d Y  dZ 
V,T=const 

= p(x(r, y, z ,  TI, Y(r, y, z ,  T) ,  z(r, y, Z, U ,  T )  

x[3xa( r ,  y, z ,  T)XP(r, y, z ,  T)-iYPXpXF(r, y, z ,  T ) ]  

X 3 J ( r ,  y, 2, T )  dr  dy dz, 

V,T =const 

(5.1) 
with 

Let iik denote the metric of the flat space-time in the coordinates r, y, z ,  T. The 
(four-dimensional) Jacobian for the transformation (4.10) is 

and hence, given that 

(-+)"' dr dy dz d T  = d X  d Y  d Z  dT, 

where 6 is the determinant of the matrix tik, we have 
= J. 

(5.3) 

( 5 . 5 )  

To evaluate 6, let us consider the transformation r, y, 2, t-,  r, y, z ,  T. We have from 
(4.8) 

77 is, from (2.2) and (2.3), 
2 

77 = -m[($)J 44 ' 

where we have written 4 instead of +', and therefore 

(5.7) 

Finally, we see from (4.10) that the term in square brackets in the quadrupole formula 
(5.1) is of the form 

3XaXp-SapXpXC" = F a p ( r ,  y, z ) T 2 + G a p ( r ,  y, z )T+H"@(r ,  y, z ) .  (5.9) 

Inserting (3.9), (5.8) and (5.9) in (5.1) and omitting the parameter E we obtain 

x [ F " P ( r , y , z ) T 2 + G a P ( r , y , z ) T + H a p ( r , y , z ) ] d r d y d z .  (5.10) 
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Since the description of V depends only on r, y, z and not on T, it is readily apparent 
that 

D * P  = 0, (5.11) 

where the dot denotes differentiation with respect to T. 
We conclude that according to Einstein’s quadrupole formula (1.1) the matter in 

Szekeres’ quasi-spherical space-times does not radiate. The result is independent of 
the shape of the moving mass. 

6. Conclusion 

This work shows that for quasi-spherical space-times the linear approximation agrees 
with the exact solution in predicting that a body of dust moving in a Szekeres rtgime 
does not radiate gravitational waves. The result of the linear approximation is 
independent of the shape of the body. In this respect it is more general than that of the 
exact solution of Bonnor which referred only to a spherical body. 
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